Investigation of interfacial heat transfer characterization for TC4 alloy in triple-layer sheet hot stamping process

نویسندگان

چکیده

During the hot stamping process, heat exchange always occurs between sheet and cold tools. The interfacial transfer in whole-forming process will not only affects forming quality of parts but also partially determines their post-form mechanical properties microstructure distribution. As an essential parameter, interface coefficient (IHTC) is great significance for prediction temperature fields finite element simulations, especially novel-forming named triple-layer stamping. In this study, experiment carried out to investigate behavior titanium alloy process. effects contact pressure, cladding steel thickness, gap on are analyzed, high-strength sheets calculated. model established verify accuracy calculated coefficient. results show that upper lower maintain at a higher level compared with single-layer one. under decreases from 900 781.6 °C after transferring, decrease 118.4 °C. declines by 57.5 during period addition, obtained have better properties. IHTC increases increase pressure thickness gap. validated comparing simulation. maximum error simulation experimental measurements 5.5%.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of fluid flow and heat transfer in tube hot metal gas forming process

In this study, hot metal gas forming process of AA6063aluminumtubeis studied with a focus on heat transfer of both fluid and solid phases numerically. An experimental study is simultaneously conducted to validate the numerical method. Some of the most important outputs of the present study, are velocity distribution of fluid inside the tube as well as the fluid in the gap between tube and matri...

متن کامل

Numerical and Experimental Investigation of Deep Drawing Process in Square Section of Single-Layer and Two-Layer Sheet

Deep drawing of two-layer sheet is a suitable way to achieve product with a desired shape and desired properties in sheet metal forming technology. Control of deep drawing parameter such as thinning is the most important challenge in this process. The most difficult part of this challenge is differences in material properties and geometry of each layer. In this paper, numerical approach has bee...

متن کامل

Investigation of Effective Parameters of the Two-Layer Sheet Hydroforming Process for Hollow Parts with Complex Geometry

AbstractHydroforming process is a deep stretching process only with the difference that a fluid is used instead of the mandrel. This paper investigates the hydroforming process of non-cylindrical and non-spherical geometries using finite element analysis software to calculate the influences of effective process parameters such as the coefficient of friction between the surfaces and the pressure...

متن کامل

Mathematical Modeling of Heat Transfer for Steel Continuous Casting Process

     Heat transfer mechanisms and the solidification process are simulated for a continuous casting machine and the geometric shape of the liquid pool is predicted considering different conditions. A heat transfer and solidification model is described for the continuous casting of steel slabs. The model has been established on the basis of the technical conditions of the slab caster in the con...

متن کامل

Investigation of Heat Transfer Coefficient Enhancement for CuO/TiO2 Nanocomposite in a Tube Heat Exchanger

In order to improve the efficiency and rate of heat transfer in heat exchangers, various techniques such as increasing the heat transfer coefficient are proposed. This study is devoted to the investigation of heat transfer coefficient variations due to the addition of CuO, TiO2 and CuO/TiO2 nanoparticles into a shell and tube heat exchanger. CuO/TiO2 nanocomposite was synthesized using mechanic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The International Journal of Advanced Manufacturing Technology

سال: 2022

ISSN: ['1433-3015', '0268-3768']

DOI: https://doi.org/10.1007/s00170-022-09570-w